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ABSTRACT

'The logic and the methods of Monte Carlo Renormalization Group (MCRG)
are reviewed. A status report of results for 4-dimensional lattice gauge ti.eories
derived using MCRG is presented. Existing methods for calculating the improved
action are yeviewed and evaluated. The Gupta-Cordery improved MCRG method
is described and compared with the standard one.

The development of Monte Carlo Renormalization group method (MC RG) was
essentially complete in 1979 with the work of Wilson!, Swendsen? arnd Shenker and
Tobochnik3. Prior to this Ma* und Kadanoff® had provided key ingredients. The
method is therefore relatively new, furthermore iis application to field theories ha-
been carried out only since 1982. In this short period there has been considerable
activity and I shall review the methodology and summarize the status wicth emphasis
on 4-dimensional gauge theories. There already exists extensive literature on MCRG
and I direct the reader to it!'3:®:7 for details and for a wider exponure. Similarly, the
reviews®® are a good starting point for background on Lattice Gzuge Theories and
on spin systems. The topics I shall cover are

1) Introduction to M CRG and its methodology.

2) Renormalization Group Transformations fc: d = 4 lattice gauge theories.
3) U(1) Lattice Gauge theory.

4) B-function and Scaling for SU(3) Lattice Gauge Theory.

5) Improved Actions and Methods to calculate them.

6) Improved Monte Carlo Renormalization Group.

7) Effective Field Theories.

The main results in QCD {rom M CRG are the determination of the 8-function
and the consequent prediction for the value of the coupling at which asymptotic
scaling sets in and second an estimaie of the improved gauge action!?. These rasult-
are not spectacu'ar in the sense of confirming that QCD is the correct theory of
strong interactlons, however they Lave led Lo a deeper understanding of the lattice
theory and provided a quantitative estimate of the approach to the continuum limit.
I shall attermpt to show that this method is as yet in its infancy and should be used
to tackle a number cf problems.

i 1 Invited Talk given at the Nov. 19885 Wuppertal Conferunce on: Lattice
Gauge Theories —— A Challcnge yn Large Scale Computing.
t J. Robert Oppenhesmer Fellow



1) INTRODUCTION TC MCRG

Renormalization Group!!??:!? (RG) is a general framewcrk for studying asye-
tems near their critical point where singularities in thermodynamic functions arise
from coherence at all length scales. This phenomenon occurs in Statistical Mechan-
ics near and on the criticai surfuce (defined by a divergent correlation length) and in
the strong interactions of quarke and jluons. The MCRG method was developed to
Landle this problem of infinitely many coupled degrees of fieedom so that sensible
results can be obtained from finite computers. There are two central ideas behind
MCRG: One is to average aver these infinitely many degrees of freedem in discreet
steps preserving only those which are relevant tor the description of the physical
quantities of interest. The interaction between these averaged (block) fields is de-
scribed by an icfinite set of couplings that get renormalized at each step. In QCD
this discrete reduction is carried out until the correlation length is small enough so
that the system can be simulated on a lattice with control over finite size effects. The
wecond is that there are no singularities in the coupling constant space even though
the correlation length diverges on the critical surface and that the fixed point is short
ranged. Thus even though there are an infinite number of couplings generated under
renorimalization, only a few short range ones are necessary to simulaie the system
at a given scale and preserve the long distance physics. Present results suggest that
the fixed point for QCD is short ranged.

Standard Monte Carlo: Consider a magnetic system consisting of apins {s}
on the sites of a d — dimensional lattice L described by a Hamiltonian H with all
possible couplings { Ko }. All thermodynamic quantities can be found from a detailed
knowledge of the partition function

Z=E e V= Z eKe 5. (r.7)

where S, are the interactions. In Moute Carlo, configurations of spins on the ori

inal lattice are generated by the Metropolis'4, heat bath!® molecular dynamics
aliaz Microcanonical'® or the Langevin!7:'® algorithm with a Boltzmann distribu-
tion e/ = eXeS«  All thermodynamic quantities are given as simple averages of
correlstion functions over these weighted configurations. Tlie accuracy of the caleu-
lations depend on the size of the statistical sample and the lattice size L used. Both
these quantities depend on tke largest correlation length ¢ in the system. Near the
critical temperature, T, associated with second order phase transitions, the ~orre-
lation length and consequently thermodynamic quantitien like the npecific heat etc
diverge as functions of (T —T,) with universal ~ritical exponents that have been calcu-
leted for many systerns either analytically or by the Monte-Carlo / MCRG method.
Because of a diverging £, long runs are needed to counter the critical slowing down
and the latiice size has to maintained at a few timces £. The problem of critical slow-
ing down ls addressed by anr'yting update algorithma (Metropolis vs. heat bath va,
Microcanonical vs. Langevin with acceleration techniques like multi-grid'®, fourler
acceleration?2° etc). The optimum method ls, of course, niodel dependent and has
to take care of metastability (local versus global minima) and global excitations Ik~
vortices, Instantons etc that are not efficiently handled by local changes. This last
feacure has not received adequate attention. To control the second problem in atan-
dard Monte Carlo, effects of a finite lattice especially an £ — oo, finite slze scaling



has been used with success. In this review I shall concentrate on MCLG. First
I shall describe how universality and scaling are explained by the renormalization
group.

The rencrmalization group transformation (RGT) H' = R(H) is an operator
defined on the space of coupling constants, { K, }. In prectice the RGT is a preacrip-
tion to average spins over u region of size b the scale factor of the RGT, to produce
the block spin which interacts with an effective theory H!. The twc theories & and
H?! deacribe the same long distance physics but the correlation length in lattice units
£ — f If this RGT has a fixed poirt H* such that F* = R(H"), then clearly the
theory is scale invariant there and £ is either 0 or 00. An example of a fixed point
with § = 0is T = oo and ihese are trivial. The intcresting case is £ = oo shout
which the theory is governed by a single scale . If this fixed point is unatable in
1 direction only (this direction is called the Renormalized Trajectory (RT)), then
non-critical H wili low away from H* along trajectories that asymptotically con-
verge to the RT. Thus the long distance physics of all the trajectories that converge
is identical and is controlled by the RT. Similarly, points ¢ away from H*® on the
oo — 1 dimension hypersurface at which £ = oo (the critical surface) will conver~e
to H*. The fact that the fixed point with its associated RT control the behavior
of all H in the neighborhood of H* is universality. Next, consider a non—critical H
that approaches H® along the RT. Thermodynamic ,uantities depend on a sing'e
variable 1.e. distance along the RT. This is acaling. Corrections to scaling occur
when H does not lie on the RT. These are governed by the irrelevant eigenvalues of
the RGT which give the rate of flow along the critical surface towards H* and for
H not on the RT, the rate of ~onvergence towards it. The relevant cigeavalue gives
the rate of low away from the fxed point (along the unstabls direction RT) and is
related to the critical exponent v. This terse exposé ends with a word of caution;
all these statements have validity close to H".

In the MCRG method, configurations are generated with the Boltzmann factor
¢®5« as in standard Monte Carlc. 1'he RGT, P(s*,s), Is a prescripticn for averag-
ing variables over a cell of dimension 5. The blocked variables {s'} are defined on
the sites of a sublattice L? with lattice spacing b times that of L. They interact with
undetermined couplings K}, however the configurations are distributed according to
the correct Boltzmann factor ¢ ' i.e.

c—Hl(.l) _ )‘_: P(OI.J) c—H(i) (1.2)

g0 expectation values can be calculated es aimple averages. The RGT should satisfy
the Kadanoff ccustraint

Y P(a',s) =1 (1.3)

independent of the statr {s}. This guaruntees that the *wo theories /7 and H! have
the same pertition function. The blocking is done n times to produce configurations
with hamiltonians H" descilbing the same long distance physics but on increasingly
coarser .attices. The fixed point H*, the RT' =.d the n2quence of theories, H",
generated from » given starting H depend on the RGT. Ma.y different RZT can
be used to analyze a given model (determine t}o universal exponents) and I defer
discussion on how to evaluate their efficiency to rectioas 2 and 5.



1.1) Methods to calculate the critical exponents.

There are two methods to calculaie the critical exponenta from expectation
values calcnlated as simple averages over configurations. In both there is an implicit
assumptior that the sequence H" stays cluse to H*. The more popular method is due
t> Swendsen?'7 in which the critical exponents are calculated from the eigenvalues
of the linearized transformation matrix T which is defined as

n _ 9K3 _ 9KZ 3(57)

ap = aK;—l = 3(Sr) aK;—l y (1.4)
Each of the two terms on the right is a connected 2-point correlation function
st = (55557 ~ (25, (15)
o O(S2) _ sngm _ (g7 (sn
BK; © (5258) — (55)(S8) . (1.6)

Here (SI*) are the expectation vaiues on the n'? renormalized lattice and K7 are the
corresponding couplings. The exponent v is found from the leading eigenvalue A, of
s & Inb
n

where b is the scale factor of the RGT. The eigenvalues {ess than one give expo-
nents that control corrections to scaling. The accuracy of the calculated exponents
improves if they are evaluated close to the fixed point. This can be achieved by
starting from a critical point and blocking the lattice a suflicient number of times
1.¢. for large n. Thus the convergence is limited by the starting lattice size and how
close the starting H¢ is to H*. If H* can be approximated by a small number of
short rarge couplings (a necessary assumption in the RG), then this method can be
inproved if the renormalized couplings { K"} are determined starting from a known
critical Hamiltonlan. These should then be used in the update. A secoad possibility
is to tune the RGT so that the convergenca to H* from a starting H¢ is improv«d.
In section 5, I will deacribe a number of methods to calculate the renormalizec . cou-
plings. Tuning of the RGT is discussed in section 2.5 and a careful analysis of the
accuracy of this method is deferred until section 6.

The second method to calculats the leading relevant exponent. is due to Wilson"
Consider once again the 2-point connected correlation function (the derivative of ar.
expectation value) (S;S3). with j > i. Expand S} in term of the eigenoperators O,
of the RGT. Close to H* the level dependence in O, (equivalently in the expansion
coefficients c:;ﬂ) can be neglected. (Chen to the leading order

(S15H) ~ M carl0NS)) 5)
where ), is the leading relevant eiganvalue and corrections are suppressed by ({,), v

‘g gt
Thus for each a and g, the 1atio (—\Eﬁ&_}; gives an estimate for the lcading eigenvalue
- 5



A¢. The accuracy of the method improvea if 5 — 1 is large since non-leading terms
are suppressed geometrically. Sc far this method has not been used extensively so
its practical accuracy cannot be evaluated.

QCD: At the tree level, the coupling g in QCD does not renormalize and the
fixed point is &t gpare = O. At 1-loop the leading operator has eigenvalue equal to one,
is relevant and the fixed point changes fiom simple gaussian to being asymptotically
free and non-trivial. A special feature of asvmptotic freedom is that even when the
leading eigenvalue is one there is a flow away from the fixed point at a censtant
rate. At 2-loop, this operator becomes truely relevant s.e. with eigenvalue > 1.
Perturbution theory also tells us that leading scaling viclations are ~ b, sc the
second eigenvalue should be ~ b for a8 RGT with sca'e factor b. Present studies???
show that the leading eigenvalue is close to 1 and the second neur E‘T However,
the statistics are poor and the calculation was done at large gpare. Thus reliable
quantitative results are lacking.

1.2: Wlilson’s method to fiud a critical point

Consider MCRG #imulations L and S wiih the same starting couplings K2 but
on lattice sizes L = b" and & = b"~!. If K2 is critical and after a few blockings
the 2 theories are close to H*, then all correlation functions attair their fixed point
valuea. For non—riticai starting H, expand abcut H* in the linear approximation

7] :
(Lg) = (1) = 5K} (L) - (5271} aKg

= {(LTLp)e - (ST7"'Sp)} AKS (1.9)

to determine AKJ. To reduce finite size effects the compared expectation values are
calculated on the samc size lattices. The critical coupling is given by

K. = K3 - AK] (1.10)

and this estimate should be imnproved iteratively.

On the critical surface the 2-point correlation functions (like in Eq. (1.5) and
(1.8)) diverge in the thiermodynamic limit. However, their ratio is the rate of change
of coupliiigs and these are well behaved. The reason MCRG has better coni:ul over
finite sizc effects is that if H* is short ranged then only short ranged correlation
functions need to be evaluated in determining T, or in Eq. (1.9]. The finite size
contributions to the ratios fall off like the couplings i.e. exponentially. Thus reliablc
estimates are obtained from small lattices.

2: RENORMALIZATION GROUP TRANSFORMATIONS IN d =4

It has been mentioned before that there is no unique RGT for a given model.
There are at present four different transformations that have been proposed for
4-dimensional lattice gauge theories. In each of them the block link variable is
conetructed fromn a sum of paths £ = 3~ paths. This sum of SU(N) niatrices
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is no. an element of SU(N), and the new block nnk matrix is selecied with iLe
distribution
P(Uy)) = ePTrOL (2.1)

where p is a free parameter to be optimized. The advantage of taking the sum is that
such a RGT preserves gauge invariance. The 4 RGT are (in cronological order)

3.1) 5 = 2 by Wilsor:!: The geometry of the transformstion is shown in Fig.
1. There are 8 links in a given directior: of which 4 are shown in the 3-dimeniional
projection. In this method the gauge has to be fixed on 15 zites other than the block
site. This fixing has to take into account the fact that ‘he ends of the 8 links are
ai different sites. The ansatz Wiison used was to tranaforr. the hypercube locelly
into the Landau gauge. The process of fixing the gauge iz slow and . disadvantage
of the method. The need for gauge fi- ing can be avoided by definiag 8 paths that
fun between the block sites and include the same links. This modified construction
violates cubic rotational invariance because of the particular choice of the ordering
of the paths within the cell. In both forms only f—g degrees of freedom are used
n this approximate averaging at each level. This method has not been used since
Wilson's preliminary investigation because the next two methods are simpl.r.

2.5) 5 =2 by Swendsen?!: The transformation in its initial form is shown in
Fig. 2a. The more general version is shown in Fig. 2b where the parameters a, have
to be determinad. In this constructicn all paths start and end at the block sites.
Thus no gauge fixing is necessary and arbitrarily complex paths can be included.
However calculations show that an optimization ¢f the parameters has to be done
to iraprove the corvergence. I shall discuss this cuning later.

2.3) b := v/3 by Cordery, Gupta and Novotny?*: This transformation
is specific to gauge theories in 4-dimensions and is based on the fact that the body
diagonals of the 4 positive 3~cubes out of a site are orthogonal and of length /3. The
geometry is shown in Fig. 3 and under one RGT the new lattice is stili hypercubic
but rotated with respect to the ol1 basis. Also, the box boundary becomes jagced.
This can be undone by a second application of the RGT with different basis vectors.
So the original box geometry is recovered after every scale change by a factor of 3.
The construction of the puths requires no gauge fixing, all paths ars of equal length
(no free parameters to be tuned) and %3 degrees of freedom are used at each step.
Further, the block cell consists of the block site and its 8 nerrest neighbors. Thia
provides ar. easy and natural way to include complex matter fields #nd block them
simultaneously. it is also beiter suited to the fermion block diagonalization p1-cess
of Muttar and Schilling®! as is explained in section 5.10. In practice, for both SU'(2)
and SU(3), this RGT has consistently shown good convergence at strong and at
weak coupling. It is therefore recommended.

2.4) b = /2 by Callaway and Petrontlo?®: The construction of paths
shown in Fig 4a is bas. . on a planer structures.e. £ —y and z — t planes are treated
scparately at all blocking steps. No gauge fixing is required but only 2 patha are
used in the averaging v.c. in Eq. (2.7). This drawback of using only 2 planar paths
can be improved by ir Juding nonplanar pa.ls as shown in Fig. 4b. Beccause this
RG7 has the advantage that b = /2 is the smallest scale factor possible, a serious
test should be made.
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3.5) Optimization of the RGT: In addition to the freedom of the choice of
the KGT, there are the free parameters p and ¢;. Hasenfratz et al.24 have shown
that the convergence of the original b = 2 Swenduen traasformation is improved if
p is tuned. I will give a qualitative description of how this works. Considsr a set
of RGT that are a function of the continuous parameter p s.e. Rp. Starting from
a given point H, the b vcked theories generated are described by H'(p). They all
have the same long distance behavior as can be checked by measuring expectation
values of large Wilson loops. In fact there ix an effective Wilson action H. sy which
will have the same loi,g distance behavior. The short distance behavior of H(p)
will be different and for some values of p, the (plag), will be larger than the (plag)
corresponding to Heys. I have checked that this is the c2se for the criginal Swendsen
transformation when p = oo and 42 < 1. Lowering p reduces the blocked (plag),,
making it agree better with H.ss. Thus, the tuning makes the short and long
distance behavior correspond better to the same approximate H,ss. This improves
the ‘nacching (using emall loops) in the 2-lattice method to calculate the A-function.
Havenfratz et al.?* estimate p using perturbation theory and by Mcnte Carl) using
the criterion of early matching of block expectation values ia Wilson’s two lattice
methcd. They found that the best velue at f; = 6. given by Monte Carlo (~ 35)
does not agree with the value found using perturbation theory (~ 15). So as of now
this optimization is still by trial. Also, p.p¢ depends on the coupling g. This irplies
that the RT cannot be pulled close to the Wilson axis globally by this optimiration.
So the usefulness of such optimization is limited to the f-function calculation. The
parameters a; can similaily be optimized using the same improvement criterion.

Gupta and Patel?? used p = oo in the v/3 RGT. This is equivalent to choosing
the matrix U such that Tr U Y is roaximized (the é-function construction). They
find that even with this choice the small block Wilson loops are more discrdered
than for an H,y; determined using large loops. Thus lowering p would not help.
The v/3 RGT has shown good convergence properties and provided reliable results
with p = oo.

The freedom to choose the RGT and further tune the parameters o, and p
leads to the question: What are the criteria by which to decide what is the best
RGT? I will first address the question —— what is the effect of chunging the RGT
on the fixed point and on the RT? Conjecture?®: Changing the RGT inoves the fixed
point on the critical surfuce but only along redundant directions. A simple argument
is as follows: Consider two different RGT, R\ and R;, and their associated fixed
points H| and H;. There are no non-analytic corrections to sculing at either fixed
points and the associated RT. If these two points are distinct, then under R, H;
flows to Hy. Consequently thers are no scaling violations along the flow. This is
by definition a redundant direction. This implies that the associated BT differ by
redundant operators.

The presence of redundant operators does not effect the physics, however it can
obscure results. The redundant eigenvalues ai: not physical, depend on the RGT,
and can be relevant or irrelevant. If a relevant redundant operator is present then
the flows will not converge to the H* or to the RT. Thus it is desirable to pick a
RGT for which the redundant eigenvalues are small. Similarly, the coefficients of
the leading irrelevant operators should be reduced. To some extent the irrelevant
basis vectors are a {unction of the position of H*, so it Is possible to simultaneousiy
reduce the two coefficients. In QCD. there is an additional freedom —— all possible
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Wilson loops form san overcomplete set. Therefore, in order to tune the RGT and to
find an efficient improved action, it is necessary to determine the operators that can
be eliminated because of the overcompleteness »nd the redundant combinat;ons.

Swendsen?® has conjectured thzt the fixed point can be moved anywhere on the
critical surface by tuning the RGT. In partizular, if the simulation point is made
H*,then that RGT is optimal. There is some support for thie in spin systerns, where
by adding terms to the RGT, one can successively kill terms in the renormalized
hamiitonian. There are two things to check here: firat whether the coefficients of the
RGT terms fall off like th~ couplings, 1.e. exponentially, and second whether the long
range untuned couplings continue to fall off at least as fast as before. The gnantity
to optimize is the update complexity (embodied in the RGT or the hamiltonian)
vursus the decrease in the coefficient of the leading irrelevant operator. Swendsen?®
found that the eigenvalues for the d = 3 Ising model are significantly improved with
a tuned 10 term RGT. However, he did rot compare it with a simulation that used
a 10 term truncated renormalized hamiltonian close to the A* for a simple RGT.
There is one additional anomaly in this approach: Tuning the RGT improved the
thermal exponent but the results for the magnetic exponent deteriorated in quality.
This is surprising because the fixed point is at zero odd couplings and these remain
unchanged in tuning the RGT. The previous conjectures are in conflict and the
results are ambiguous. Consequently, this subject is heing explored®® further.

The criterion for an optimum RGT is to make the H* and the RT as short
rariged as possible. In critical phenomena, the improvement can be guantified by
measuring the convergence of the exponents as a function of the blocking level. In
QCD we are interested in continuum mass-ratios etc. These have so far been hard
to measure so the improvement cannot be judged. The behavior of the RT for QCD
iv discussed at the end of section 5. T'or the moment let me conclude this section by:
The the question of how best to optimize M CRG has not been adequately answered
and is under investigaticn.

3: U(1) LATTICE GAUGE THEORY:

The phase diagram of the theory defined by the action

S = ﬂZcoaB,w + "fzcanG,w (3.1)

where f () is the charge 1 (charge 2) coupling is known to have e phase bound-
ary separating the confining (strong-coupling) phase from the spin-wave (QED)
phase3?28,2%  The order of the transition along the boundary DXZ in Fig. 5 is
not known. In particular it is not known if the gradually weakening first order
transition along CD ends in a tricritical point, and if so what is its location. Evertz
et al.2® claim that the location of the TCP isat § = 1.0v+£0.04 and y = -0.1120.05
on basis of a scaling analysis of the discontinuity in the energy AE. 'The mechanism
driving the transition are topological excitations®®:3! i.e. closed loor s of rnonopoles,
whose density is observed to change at the transition3?*3. This chunge In density
is caused by a growth in the size of the largest monopole loop wlich begins to span
the finite lattices used in the calculations®?34, Thus, the usual difficulty of finite
size effects near a TCP in determining the location of tlie TC P by an extrapolation



of the latent heat AE along the phase boundary is here compounded by the pres-
ence of monopole current loops that are closed due to the lattice periodicity33:34.
These contribute a fake piece to the AE whaich makes the extrapclation unreliable.
One solution is to calculate and then subtract the contribution of these loops from
A FE before making the extrapolation. The more reliable method is MCRG and in
particular the 2-lattice method discussed in section 1.2 should be used to locate the
TCP. A word of caution for the U(1) model when using this method: There is a
large shift in the critical coupling as a function of the !attice size3? and consequently
in the contribution of the fake monopole loops. One should therefore use a starting
coupling for which both lattice simulations are on the same side of the tranaition.

The present atatus is that in a M CRG calculation done along the Wilson axis3?
only one relevant exponent was found using the v3 RGT. Furthermore, the value
of the exponent showed a variation with . At 3 = 1.0075, v =~ 0.32 and this value
changes to v = 0.43 (or even the classical value 0.5) at 8 = 1.01. One explanation
is that the TCP lies above the Wilson axis and in simulations along the Wilsor
axis one first measures the tricritical exponent and then the critical one. The same
conclusion it also reached in a recent b = 2 MCRG study3?. Therefore the location
of the TCP is still an open question.

The interest in this model (goal of MC calcuiations) is to know if there exists a
fixed point at which a non-trivial field theory can be defined. To settle this important
question requires considerably more work.

4: -FUNCTION AND SCALING ¥OR SU(3)
LATTICE GAUGE THEORY

The non-perturbative f-function tells us how the lattice spacing goes to zero as
gtare — 0. Since on the lattice all dirnensionful quantities, like masses, are measured
in units of the lattice spacing a, we need to know how a scales in order to take
the continuum limit. One option is to use the 2-loop perturbative result provided
it is demonstrated thet this is valid at values of gy, where the calculations are
done. The other is to measure the non-perturbative G-function. In case there is only
asymptotic scaling, thia calculation is still necessary since it provides the value of
gbare 8t which such scaling sets in.

There are two methods for culculating the non perturbetive S-function directly.

4.1) MCRG using Wilson’s 3 lattice method!®: There are 2 groups who
have used this mevhod for SU(3); one with 5 = v/3 RGT %7 \nd the second?* with
b = 2 proposed by Swend - u?!. The outline of the method is: First a system of size
L = (b")? is simulated w'ch couplings K2 and the expectation values of Wilson loops
are calculated ou the original lattice and the n block lattices. A second system of size
S = (6"~ 1)9 is then simulated with couplings K2 (chusen Judiciously) and again the
expectation values are calculated on the n lattices The expectation values from the
two simulations are compared with the ones from the larger lattice L blocked one
more time s.c. L™ with S™~!. Finite size 2ffects are winimized since the comparison
is on approximately the same physical nize lattices. The couplings Kf are adjusted
(which requires a new simulation) until there is matching at the last, nt*, level.
In practice it is sufficient to do two simulations S; and S3 which bracket L and
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then use interpolation. The test for convergence of the two theories L™ and S™~!
is that the expectations values should match simultaneousiy at the last few levels.
This situation is shown in the coupling constant space in Fig. 6. At matching, the
correlation length at K2 is larger than at K2 by the scale factor . Thus if the
starting trajectory is taken to be the Wilson axis (or any 1 parameter line) then the
value of the S-function, AS, for a scale change b is K4 — KB,

Under the assumption that the fixed point action is local, and that at any scale
a few short range couplings are sufficient to characterize the action, matching the
expectation values of a few small Wilson loops is sufficient to guarantee that the
two actions are equal. Recall that there is a one to one correspondence between the
value of the couplings and the expectation values. Also note that finite size effects
in expectation values are irrelevant once there is matching because then the two
theories flow along a common trajectory under a RGT and continue to match. Thus
it is sufficient to require that matching first take place on lattices which are large
enough to accommodate the important couplings. Thereafter, the check can be on
a 14 lattice too! It is the range of the couplings that controls finite size effects in
MCRG and not the correlation length and this range falls off exponentially even on
the critical surface. This is why M CRG has better control over finite size effects
and is a powerful method.

For the simple plaquette SU(3) action with X; = ;95, asymptotic acaling is
defined by the 2-loop perturbative S-function,

d(g~? 11 51 ,
d(ina) ~ ~ 8x3 gani? T (41)

The quantity calculated using MCRG is,

8(69~2) '

Af = - 3(ina) nb (4.2)
1.e., the discrete f-function at Ky evaluated for a scale change b.

The resuits for the b = /3 calculation®? are shown in Tatle 1, while thoee for
b = 2 are shown?! in 1able 2. There is clear evidence of a dip at ;94-~ 6.0 which
in caused by the end point of the phase transition line in the fundamental-adjoint
coupling space. The conclusion of these calculations is that there is no asymptotic
scaling below 5‘; = 6.1.

4.2) Loop ratio method®¥?; This method is simpler as it usea expectation
values of Wilsun loops calculated in standard Monte Carlo. Thus it can be used for
gauge theory with dynamical fermions while method 4.1 cannot until one learns how
to block fermions. The ratios of Wilson loops that cancel the perimeter and corner

terms
W(k,1

w(i,J)

satisfy an approximate homogeneous renormalisation group equation

R(s,5,k,1) = where s+35 = k+1 . (4.3)

R(3..25,3k,3l,94,2L) = R(i,5,k,l,0s,L) . (4.4)
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Figure 6: The evolution of actions under the renormalization group
traneformatjon. The two actions {KA} and /KB] have the
same long-distanca behavior and their lettice correlation
lengths are related by the scale transformaticn factor b.

SU(3)
9* AB for b= /3 from matching on 2-loop
Kp 34 (v3) 1 A8

(60 | 3375 | 3235 | .308() | .489

6.125 .387(5) .376(5) .351(6) 488

6.25 421(4) 424(5) 401(5) 488

6.35 431(4) 452(5) 445(9) 487

6.4: .432(4) .464(6) A425,12) 487

6.5 435(4) .464(6) 449(15) 487

6.75 430(4) 485(5) .443(9) 485

7.0 422(7) .503(11) 188(20) 484 Wl

Table 1: The val"uu of AB for b= /3 at different level. of matching for different
values of the couplings . The matching X'» on (3/3)* were determined by linear
interpolation and the errors are tase.! on a 1¢ fit. Also shown are the values of
AB corresponding to asympt.tic scaling.
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Thus using Monte Carlo data for ratios calcviated on 2 lattices of size 2L and L,
with couplings g, and g; respectively, the ciesired function AS for & = 2 can be
calculated. Caveats: Eq. (4.4) becounes ~urrect only as 1 — 0o, otherwise there are
corrections due to lattice artifacts. The quality of results for large 1, 5, ... are limited
by statistics. The reliability of the resulta therefore depends on obtaining the same
Af for 1 =1,2,3,4,.....

The contribution of lattice artifacts can be reduced in perturbation theory. For
this consider Eq. (4.4) for a linear zombination of loup ratios with coefficients a;.
Tu determine the a;, use the expectations values of loops calculated in perturbation
throry and require that A = 0 (tree-level), 0.579 (1-loop) .... Then go back and
use the monte carlo data jor Wilson loops to calculate AS. The drawback of this
approach is that if two (or more) ratios of different scale, ¢ = 1 and 4 say, are used
then the difference in staiistical errors is a problem.. Otherwise, at weak coupling
each ratio roughly satisfies Eq. (4.4) and there is a loss of sensitivity in determining
a;. At strong coupling, perturbation theory calculation/improvement of a, breaks
down. So one carn, at best, expect a window where reliable results are obtained
Heaenfratr. et ul.34 claim this is true for & in thc range [6,6.6]. Their results are
in agreement with their & = 2 MCRG results as shown in Table 2. It has been
observed by Cutbrod™ in SU(2) that stability with respect to loop size is reaclied
slowiy. Therefore, one has to be cauticus of apparent convergence

4.3) Rerults: It is hard to compar~ the results of the b = /3 atudy directly
with the b = 2 ones vecause of the different scale factor of the RGT. Petcher*® has
carried out the following analysis: he fits the b = /3 data to a smooth function
which had the correct asymptotic value built in. This function can then be used to
determine the discrete change AS in the couplings for ary other scale factor 4. In
Fig 7 the smooth function found from the \f3 data 1escaled to b = 2 is compared
with the b =2 MCRG daca.

Next we would like to check it the AJ calculated from MC determinations of
different physicai observables are identical and agree with the MC RG calculations.
This coruparison tests two things, first whether there exists scaling (constant mass
ratios) before (larger g) asymptotic scaling and second whether the MC measure-
ments are veliable. The lattice value of a mass ma calculated at two values of the
coupling, ;Q.; and ;Q’;, gives the Af for a scale change fJ; Unfortunately the values

of couplings cannot be selected to give the AS for a given constant scale -hange.
This again introduces the problem of rescaling dats thereby preventing a defnite
statement on scaling. In F'g. 8 we have only used pairs of data points with a scale
factor close to v/3. At i°;=6.0, the 0%+ glueball \nass*!, string tension 042 and the

deconfinement temperature T, 3 represent scales of 2,5 and 8 lattice units respac-
tiely. Thus identical A would be a reasonable test of scaling. Bearing in mind the
problem of rescaling data, the only significant statement is that the behavior of the
glueball mass is different.

The onset of asymptotic scaling has also been checked by plotting J4 where m
is the deconfinement temperature T, and A is the 2-loop perturbative scale. Kuti
et al.* found that for N, = 10,12,14 thi .atio Is constant and different from
the value at N, < 8. From this they dcduce that there is asymptotic scaiing for
;‘-) 6.15. The only drr-. vack of this method i the reliance on A calculated In 2-

loops to define aaymr cotic vcaling. There could be corrections i.e. (14-O(g?)) terms,
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that are large for g ~ 1. Thua these calculations should be used as a guide and the
goal should always be to attain constant mass-ratios.

To conclude this section; MCRG calculations have not yielded any physical
rerults so far, but they have provided us with a definitive stateinent on the approach
to the continuum limit. This is non-trivial. The present MC determination of ¢ and
the glueball masses need improvement before a definite statement of scaling can be
made. The largest lattice calculation of ¢ by de Forcrand** show deviations from
asymptotic scaling i.e. /o = 92 (79) AL at % = 6.0 (6.3). Since these calculations
have already taxed the power of a Cray XM}J 48, it leads us to the question whether
improved actions can help. This is discussed next.

5: DETERMINATION OF THE IMPROVED ACTION.

The advantage of using an improved action in MC simulations is to reduce
the effect of operators that lead to sraling violations. In QCD this means that
corrections to mass-ratios determined from small Jattices can be reduced. Second,
we want to avoid regions near aingularities where continuum mass-ratios are violated.
A known example is the end point of the phase structure in the fundamental-adjoint
plane. There are, to the Lest of my knowledge, 11 methods in existence to calculate
the renormalized couplings. All, except for those using perturbation theory (and
therefore only valid near g = 0 where scheme dependence is negligible), are based on
MCRG. In fact, since the fixed point and the Renormalized trajeciory is a function
of the RGT, an improved action is content-free unless the RGT is specified.

I shall briefly describe the methods, state their advantuges and disadvantages
and mention results obtained with them. The generic problem of systematic errors
in the estimate of the couplings due to a truncation in the number of couplings kept
in the analysis will be referred to as “truncation errors”. This is a serious drawback
because the errors can be very large and *aere is no way of estimating them without
a second long simulation. In order to consider this truncated ansatz to be the best
'fit’, a criterion to judge the improvement has to ba established. This is discussed
after a bric. deacription of the methods. To fix the notation, the pure gauge SU(2)
action ls written as

: ~ 40
S = Kp) Trip+Kep ) TrUsp+ Ky }_,{5(7 rUp)? ~ 3!
+ Ky Y (2TrU,)° - TrU,) (5.1)

while the SU(3) sction ls

| 3 1
S = Re[Kr) TrUy + Kep ) _TrlUs + KGZ{E(TrU,,)’- 2TrUs)

+ Ka }:{g | TrU, |? -%}] : 5.2)

Here the higher represcntations have been constructed from Uy, all the traces are
normalized to unity and the sums are over all sites and ponitive orientations of the
loops.
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AB for SU(3) (16 matched with 8¢)

+i_ I b= 2 MCRG method bd=2 1-lo0p Ratio method
60 | 0.35(2) o 1.36(3)
63 | 0.43(3) 0.45(3)
6.6 0.55(9)
Table 2 : The values of AS for a scale change of d=2. The regults are from

Haseufratz e al. 4.

Ka Ky X
Action Ky
m———
2.50 (W) 2.571(05) | -0.195(01) 0.043(01)7 -0.0036(003)
2.058(06) | -0.186(06) | 0.038(03) | -0.010(02)
2.75 (W) 3.16(1) -0 199(03) | 0.042(02) | -0.0208(715) |
2.815(35) | -0.214(11) | 0.044(06) ~0.019(04)
3.00 (W) 3.69(1) -0.190(04) | 0.040(02) -0.0314(007)
3.469(45) | -0.211(12) | 0.039(04) -0.032(03)
3.25 (W) 4.12(2) -0.160(05) | 0.025(03) -0.0374(004)
4.003(37) | -0.182(10) | 0.032(06) -0.040(03)
3.50 (W) 4.71(2) -0.168(05) | 0.028(03) -0.0402(004)
4.396(67) | -0.150(i5) | 0.007(06) -0.049(02)
4.35 (MK) 3.42(1) -0.211(02) | 0.044(01) -0.0268(011)
3.098(33) | -0.235(12) | 0.055(04) [ -0.029(03)

Table 3. Projection of the renormalised SU(2) action onto the [Kp K4 K y/2.K'¢, ]
space for several starting acticns. For each starting action, the first row shows the
couplings after one b= ./3 RGT on starting lattices of size 9* cilculated by the 2-
lattice method 2. The second row shows the couplings after lwo RGT on start-
ing lattices of mize 18* calculated uming the microcanonical demon meuthod *). The
last set, Kpws 4,35, is on the MK trajectory Eq. (5.6).
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5.1) Symanzik Program*®: This is a perturbation th2ory method to remove
all O(a?) corrections in physicai observables. At the tree level, at 1-loop*® and in
the leading log*” unalysis, the O(a?) corrections are removed by including the 6-link
planar loop with strength
K
—£ = -0.05 . 5.3
= (5:3)
There have been some SU(3) calculations®® done with this action, but they are
inconclusive and no statement for an improvement in maas-ratios can be made.

5.2) Block Spin Renormaliration Group (perturbation theory): The
first work in this direction is by Wilson'! who wrote down the ansatz

K
=% - _0.0576 ﬁ—‘ = —0.0388

Kr ' Kr '
where K¢ is the twisted 6-link coupling. No calculation of physical observables
has been done with this action. The group of Iwasaki et al.4® have made u large
independent effort in this direction of improvement. They find that near g = 0 the
action aftcr 3 RGT can be approximated by including the 6-link planar loop with
strength

(5.4)

K 0.331 .
Zep . 220 (5.5)
Kr 3.648

They show that for both the Wilson ensatz, Eq. (5.4), and fr this action instantons
are stable on the lattice. Cincc this is not true of the simple plaquette action,
they regard it as another criterion for improvement. They have recently calculated
the string tension and the hadron masses in the quenched approximation using the
improved gauge action of Eq. (5.5) and the standard Wilson action for the quark
propagator on a 127 x 24 lattice at an effective 4 ~ 5.9. Their results for mass
ratios are impreysive. A comparison with an equivalent calculation on the Wilson
nxis is limited because a number of parameters are different. The accuracy of their
results warrants more attention.

5.3) Migdal-Kadanoff Recursion Technlque: This calculation?® is limited
to the plaquette in the Yandamental and higher representations. The integration
over links is done by cxpanding the action in ternis of the characters and then us-
ing the recursion formula. In the improved action, the effect of the singularity in
the fundamenta! adjoint plane is reduced but the leading irrelevant coupling K is
not included. For SU(2)‘°. the convergence in the character expansion was good,
the recursion was stable on keeping 20 characters. The improved action is domi-
nated by the spir 1 nnd 3/2 representations, and the K-M improved trajectory was
approximated by

Ka

Kr
It was later shown by Bitar et al.2° that tue heat Kernal action works very well in the
recursion acheme and in fact Is the solutlon In the perturbative limit. For u SU(2)
calculation of the S-function along the K-M improved trajectory K4 = —0.24Kp,
and for an analysis of the improved action see Ref. 22b.

= -0.24 . (5.6)

8.3b) Phenon.enological (Lines Of Constant String Tens:on): The con-
tinuum limit Is taken along directions perpendicular to the lines of constant string
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tension in the negative fundamental- adjoint plane. Rebbi®? et al. have measured the
qJ potential, while Samuel®? has spearheaded a calculation with scalar quarks. The
effective coupling for comparison on the Wilson axis is defined by usirg the large N
resummation technique®®®. Since no d:rect comparison has been made it is hard to
state if vetter maas ratios are cbtained.

5.4) Swendsen’s method®* using the Callen representation: The block
expectations values of Wilton loops are calculated in two ways. First as simple
averages over block configurations, and second using the Callen representation®®
with a guess for the block couplings. From these two estimates, the block couplings
are determincd iteratively. The method is fast and easy to implement. It does have
undetermined truncation errors. Lang®® has used this method to show that the
quartic coupling A¢* in the self-interacting scalar field theory renormalizes to zero.
Recently Burkitt3® has used it to map the flow of the action under the b = 2 RGT
(section 2.2) for the U(1) model. From a diflerence in the flows he can estimate
the transition point on the Wilson axis. It would be instructive to extend the TI(1)
analysis to v couplins. values along the phase transition line and check if there is a
qualitative change at the TCP.

5.5) Callaway-Petronzio- Wilson®”*$ method of Axed bleck spius: This
method is uaeful for discrete spin systems like the Ising model and models in the
same univeraality class. A MCRG calculation is modi.ed by fixing all the block spins
except one such that only a controllable few block interactiors are non-zero. The
system is simulcted with the RGT used as an addit‘onal weight in the Metropolis
algorithm. The ratio of probabiiity of this unfixed spin being up to it being down is
equal to a determined function of a certain number (depending on how many block
interactions are non-zero) of block couplings. By using different configurations of
fixed block spins a system of linear equations is set up from which the block couplings
are determined. The drawback of this method, even for the Ising model, is that it is
hard to set up the block spins 8o that only a few (% 10) block interactions are nonzero.
Wilsoi showed that this can be done if one uses the lattice gas representation ¢.e. 0
or 1 for spin values. The couplinge in the £1 representation are then given by an
expansion in the lattice gas couplings. This expansion has been showr to converge
rapidly for tlie d = 2 Ising model. The second improvement due to Wilson ia that
instead of a MC determination of the ratio of probabi'iijes, the exact result can be
obtained in the transfe- matrix formalism. The drawback here is that a Vax 11/780
type machine can handle only up fv 12 spins. However its non-statistical nature
makes it useful as a test.

5.6) Character Expanalon method of Bitar®®: I will deacribe this metliod
with a restriction to simple plaquette actions. The character expansion for the wction
i S = Y, Z, Kex.(Up) where x, is the character in the r** representaiion
and K, is the corresponding coupling. Similarly the Bolizraann factor F, for eath
plaquette p can be expanded in a character expansion Fy, = 3 d,frx,(Up) w'iere
d. is the dimension and f, the coefficient for r'® representation. The couplings X,

are glven by

K, = /d(U,,) (nFy(11,) xs (U) (8.7)

The cruclial atep is that the ratio !7{‘ can be calculated as a ratio of expectation val-
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ues aver block configurations. From this the Boltzmann factor Fp and consequently
K, can be determined. The metk:nd is sensitive to the convergence of the character
expansion i.¢. the ruiaber of terrus in 1 zé2ded to determine Fp accurately. After this
there are no trunsation errors ‘n determining K,. The method grows in complexity
if larger loops are to be included in the analysis. The first results®® for the simple
plaquette action in SU(2) are encouraging.

5.7) The Schwinger-Dyson Equation method of Falconl et al.%%: In this
method the lattice Schwinger-Dyson equations (equations of motion for expectation
values of 1 -point functions) are used to write down a set of inhomogeneous linear
equations for the couplings. The coefficients and the inhomogeneous term are given
in terms of expectation values of n-point functions. In deriving these equations the
action has to be truncated to the sybspace of couplings to be detarmined. Thus the
method has truncation errors. Preliminary results for the O(3) non-linear g-model
in d = 2 are encouraging.

5.8) 3-Lattice MCRG method®!®: The calculation steps are the same as
Wilson's 2-Lattice method to determine the A-function. The method consists of ex-
panding the block expectation value' (with unknown couplings) about those from
a simulation with known couplings. Keeping jusi the linear torm in the expansion
gives the difference between the two sets of couplings. The main advantage is that
this comes free with the calculation ~f the S-function. The method has a statisti-
cal drawback that it requires two different simulations 3o there is no possibility of
cancellation of statistical errora. Also, far from the RT, only the first renormalized
couplings can be dctermined accurately. Thera exist extensive calculations for both
the SU(2) and the SU(3) models using tiie v/3 RGT. The estimate for the improved
action in a 4-parameter space for SU(2) is?2

K Ka Ky .
—Lk = _o. — = -0.19 = 0.0 .
K % .k L 3 (5.8)
and for SU(3) is®’
K K K
_OB- = —(. -—'- = --0_ —-2 = -\, ' .
X 004, ¢ 12, &2 0.12 (5.9)

The truncation errors are known to Le large and the reliabil.ty of the results is
being tested by using the estimrted irnproved action in the ' pdate and repeating
the calculation of the f-function and the improved r-tion. Also the hadron spectrum
is being calculated to test if better mass-ratios are obtained. A detailed compar.son
of the results for the renormalized action is made with the microcanonical method
discussed next.

5.9) Milcrocanonical (Creute's Demon) Method®?: This method Is very
efficient if from a previous M C RG calculation expectation values of n block Wilson
loops st each of the [ block levels are determined. To determine the correxpond-
ing couplings at the I'* level = microcanonical simulation ia then done (on a same
size lattice as on which the block expeciation values were calculated) with the cor-
responding n energles fixed and with one demon per inturaction. The deslred n
couplings are then deternlied from the distribution of demon energies. P. Stolorr®®
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at Caltech used tle block expectationa values obtained after two applications of the
V3 RGT for SU(2). From these he obiaiied the second, (I = 2), renormalized ac-
tion In a truncated ccupling constant space (four couplings of Eq(5.1)). The results
are shown in Table 3 und comparad with the first renormalized couplings obtained
from the 2-Lattice M CRG method described above. The results show a rapid con-
vergence of the action t« the RT consistent with the estimates given in Eqc (5.8).
This is evidence that the /3 RGT transformation has good convergence properties
after two steps. In this calcuiation it wes easy to thermalize the four energies. The
simulation is faster than the 2-Luitice meihod and has better statistical properties.
Also the block couplings at all levels can be determined once the block expectation
values are known. The truncation er;ors arc .he same as in the 2-Lattice method.

5.10) Block Diagonalization method of Mutter and Schilling®¢: This
is at present the only mr-ethod tha! attempts to improve both the gauge =.d the
fermion action. The main idea is thet quark propugators are czlculated on blacked
gauge configurations using a blocked fermion action. The blocked fermion action is
calculated as follows: Let the starting action be the Wilson action

YMY (5.10)

wherc M is the interaction matrix. The lattice is now divided inio blocks which for
the v/3 RGT coatain 9 aites each. The site action is then cast into a block action

ET 8 (5.11)

where £ is 2 9 component Dirac ferinion fleld and I' is the interaction ratrix set up to
reproduce Eq. (5.10). The mass term part of ', ', is now diagonalized to provide
the non-interacticn fermion basis vectors. For the /3 RGT, the 9 eigenvalues of
I')n are O and 8 degenerats ones with value g The light mode alone is kept on the
blocked lattice. The interuction between the light and heavy modes is calculated
in perturbation theory and ihese terms a-~ added to the Wilson action to give the
improved fermion coupling matrix. It !s to be noted that viiis fermion diagonalization
is orly approximate. Thur lattice maases will not a priori change by the scale factor
b between the originel and ths blocked lattice. It is therefure necessary to flist check
huw good the transformation ia in preserving mass-ratios of tlie unblocked syatem.
The results on a twice blocked aet of configurations using 4 = 2 are encouraging®®.
Results of a test of preservation of mass ratios under blocking should be available
soon for both the b = 2 and / = /3 RGT. At this point it is worth mentloning
that the following advantages were observed in the diagonalizrtion process for the
v/3 RGT in comparison to b = 2.
(a) The seperation between the light modes m ~ 0 and the heavy modes is bette:
i.c. E versus 3, #0 tha perturbative corrections cre more reliable.
(b) Rotational Invariance ix not broken as is in the b = 2 tronsformation.
(c) No closed gauge loops which manifest themaelves as additional contact terms in
the fermion operators arise. This implies that the value of thc Wilson parameter
r does not get modified and x, would remain the vame on the blocked lattice
for the Wilson fermiona If the exact ferm'on coupling matrix was used in the
calculations.
(d) The blocking of gauge links Is \he same rs defined in section 2.3.
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Discussion: There are some features of the improved action thet seem common
to the various analysis done. The details will certainly depend on the specific RGT.
(n) The leading irrelevant cperator is dominated by Kgp, the 6 — link planar Wilson

lcop. Thus a RGT that kills it is an improvement.

(b) From the /2 RGT snalysis, one gets an estimate of -f—&- ~ %: ~ =0.12.

Thus near & = 6., the phase structure in the {Kr, K4} plane is avoided.
This is necessary because in the vicinity of the end point of the phase structure
universality is violated.

(c) The RT for the b = V3 RGT shows significant deviations from linearity in the
region accessible to Monte Carlo. The ratios given in Eqs. (5.8) and (5.6) are
an estimate of the asymptotic behavior.

(d) The RT out of the fixed point is local s.e. dominated by small loops. The Wilson
axis is tangent to the strong coupling RT at the trivial fixed point at K, = 0.
The change from the weak coupling RT to flow close to the Wilson axis takes
place in the region where current Monte Carlo calculations have been done 1.e.
between 5.7 and 6.5. This feature needs to be investigated since current mass-
ratios show a behavior that is in between strong coupling and the expected
<ontinuum one.

I i still necessary to evaluate whether constant mass-ratios in the quenched
approximation are obtained earlier with ar improved action. The results have to
justify the factor of ~ 5 by which the gauge update slows down when the above four
couplings are used. The key lies in improving the fermion sector. For dynamical
quarkd, the gauge update is a smail fraction of the update time. So, an investment
in improving the action is justified.

6: IMPROVED MONTE CARLO RENORMALIZATION GROUP®®

I shall review the Gupta-Cordery Monte Carlo Renormalization Group method
(IMCRG) in some detail. In this method the Renormalized Hamiltonian and the
Linearized Transformation Matrix, LT M, are determined without any truncation
errors. There are no long time correlations even on the critical surface and the block
n-point correlation functions like (S;55) — (S3)(S3) are calculable numbers. Also,
the method allows a careful error analysis in the determination of the renormalized
couplings and in the LT M.

In the IMCRG method the configurations {s} are generated with the weight

P(s',s)e” H®O+H (o) (6.1)

where H? in a guess for H!. Note that both the site and block spins are used in the
update of the site spine. In analogue to Eq. (1.2), the distribution of the block spins
is given by

e~ H'(G)+H () _ Z P(al,a)e‘"(')’fﬂ'(t‘) . (6.2)

If H? = H!, then the block spins are completely uncorrelated and the calculation of
the n-point functions on the block lattice is trivial.

(Sa) =0 (SaSp) = nabap (6.3)
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where for the Ising mode! (and most other models) the integer n, is simply a product
of the number of sites times the multiplicity of interaction type S,. When H? # H!,
then to first order

(Sa) = (SaSs)pemm (K' = K%, (6.4)

and using Eq. (6.3), the renormalized couplings { K1} are determined with no trun-
cation errors as .
(Sa)

Na

K! = K% + (6.5)
This procedure can be iterated —— use H"~! as the spin H in Eq. (6.1) to find
H™. If the irrzlevant eigenvalues are sma!l, then after two or three repetitions of
vhe RGT, the sequence H"™ converges to the fixed point Hamiltonian H* which
is assumed to be short ranged. For the d = 2 Ising model, the method has been
shown to be extremely stable®”. The only limitations of this method are the linearity
approximation, Eq. (8.4), (this is trivially handled by iterating H?) and the use of
a truncated H™~! for the spin Hamiitonian in the update tc ind H". The second
limitation can be overcome and the solution is straightforward: In Eq. {6.1) use H?
as the guess for H". The updatc now involves the original spine and all block spins
up to the nt’ level in tiie Boltzmann weight

P(a", ") ... P(a',8)e"H()+HZ (") (6.6)

The four Eqs. (6.2-6.5) are unchanged except that the level superscipt is replaced
by n, i.e. the nf? level block-block correlation matrix is diagonal and given by Iq.
(6.3). With this modifica.ion, the H" is calculated directly, The liraitation on n is
the size of the starting lattice. Such a check is necessary because errors in long range
couplings due to finite statistica and the effects of a truncation in the spin H™~! get
magnified and the system rapidly flows away from the fixed point.

The calculation of the LTM proceeds exactly as in the standard MCRG 1.c.
Eqs. (1.4) to (1.6). However, in the limit H¢ = H!, the block-block correlation
matrix is diagonal and given by Eq. (6.3). Thus it has no truncation errors, can be
inverted with impunity and tte final LTM elements are also free of all truncation
errors. The only error is in finding the eigenvalues from a truncated matrix. These
errors can be estimated and the results improved as explained below.

IMCRG is therefore more complicated than M CRG and requires a simultane-
ous calculation of & many term H(s) and H?(s') at update. However, the ayatem
does not have critical slowing down. Secondly, the correlation length £ can always be
made of O(1), so finite size effects are dominated by the range of interactions, which
by assumption of a short range H* fall off exponentially. Thus, critical phenomenon
can be studied on small lattices and with no hidden aweep to sweep correlations that
invalidate the statistical accuracy of the results.

6.1: T, uncation Errors In The LTM

Consider the matrix ¢ quation for T in block form

(D'n Dn)(Tn Tn) - (Uu Un) 8.7)
D3y Dj; Tyy Taa U Ui '
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where D}, and Uy, are the 2 derivative matrices calculated in some truncated space
of operators that are considered dominent. The elements of the sub-matrix T; will
have no truncation errors provided w2 can calculate

Tu = D;ll {U“ - DI2T21} . (63)

In the IMCRG method the matrix D is diagonal and known, so D,; is 0. Thus
elem 'nts of T, determined from U, have no truncation errors. The crrors in the
eigenivalues and eigenvectors arise solely from diagonalizing T, rather than the 7 ||
matrix T. Calculations in the d = 2 Ising model have shown that these errors
are large, s.e. of order 10%, if all operators of a given range are not included. An
open problem right now is a robust criterion for classifying operators into sets such
that including successive sets decreases the truncation error geometrically by a large
factor.

The errors arising from using a sub-matrix T;; can be reduced sig” ificantly by
diagonalizing

Ty + Tx_anuTzl = Dl_ll Un + {—Dx_llDli + Tx_llTIZ} Tz (6.9)

as shown by Shankar, Gupta and Muithy®®. The correction term TﬁlTlngl is the
24 order perturbation res:lt valid for all eigenvalues that are large compared to
those of Tz3. This correction matrix can be calculated in IMCRG from (T?);, ~
(T11)2. 1 am here overlooking the errors due to the RG flow, because of which T2 is
evaluated at a different point than T. Another aspect of these errors is their behavior
as a function of how close to H* the calculation is done. For the d = 2 Ising model
we®8:%° find that the truncation errors in the relevant eigenvalues are large. Adding
more operators does not monotonically decrcase the error. The fluctuations can be
as large as 2% even after the 20 largest operators are included in T);.

In stundard MCRG, the calculations with Ty; = Dj'U;; have shown good
convergence once few operatorss, O(5 — 10), are included in T),. The reason for this
is an approximate cancellation of a term ignored and the correction term. Using Eq.
(6.7), ignoring termas with T3; and approximating Ty, = Dl_llUn we get

-D;!Dy1a + T;'Ti; ~ -D{'Dya + U'Uys -

Further, these derivative matrices are roughly proportional, s.e. U ~ A;D and the
corrections fall off as the ratio of non-leading eigenvalues to the leading one A¢. This
follows from the arguments of section 1.1 and can be checked by expanding oparetors
in term of eigenoperators. Thus Swendsen” by calculating just D[,'U,, and ignoring
all truncation problems was effectively incorporating a large part of the perturbative
correction piece. This explains his success. Shankar’® has found a correction term to
further decreass the truncation effects in M "RG. However, given the assumptions,
the low under a RG and the success of the procedure as it exists, an improvement
may be hurd to evaluate.

Thus, at present the best way to get accurate rasults is to use IMCRG to
calculate the Renormalized couplings and Swendsen's MCRG method to calculate
the eigenvalues. The topice that need more work are the accuracy of perturbative
improvement In IMC RG, the clausification of interactions into complete sets and a
quantitative understanding of the tuning of the RGT.
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Let me also summarize some of the other results obteined from the study of the
d = 2 [sing model.
[1] The LT M has elements that grow along row.: and fall 2long columna®®, therefore
it can be arranged to look like
A B
( . D) (6.10)

with A the minimnal truncated n x n block matrix that shou!d be calc ulated.
The case ¢ = 0 is simple; there are no truncation errors in either method
and diagonalizing A gives the n largest eigenvalues. Otherwise for IMCRG
the truncation errcr depends on the dot product of terms in € and B. The
requirement of absolute convergence in the dot produci only guarsn.ees that
this product is finite but it may be arbitrarily large s.e. O(1). Therefore fr
each model, a careful study of the signs and magnitude of the elements in ¢ as
a function of the RGT becomes necessary. This is being done at Cornell®”.

[2] The leading left eigenvector is normal to the critical surface®®. Its elements give
an estimate of the growth in the elements along the rows of the LTM.

[3] Using H° &s the known nearest-neighbor critical point K¢, = 0.44068, the
IMCRG results®” for H! are independent (within statistical accuracy) of finite
size effects for lattice sizes 16, 32, 64 and 128.

[4) The results for H™ converged provided the couplirgs in H? were correct to
O(1073). This initial accuracy can be achieved®” with a few thousand sweeps
on a 1287 lattice.

[5) The statistical errors in IMCRG can be evaluated very reliably®’. Detailed
binning analysis showed that each sweep is approximately independent and an
accuracy of 107% is obtained in all couplings with ~ 2 - 10® sweeps on a 64?
lattice. This could be achieved with 3000 Vax 11/780 hours.

To conclude, I believe that IMCRG proviues a complete framework to analyze
the critical behavior of spin and gauge models. With the increased availability of
supercomputer time we shall have very accurate and reliable results.

7: EFFECTIVE TIELD THEORIES

The point of effective field cheories is that physical phenomena at some given
length scale can be described by scme effective/composite degrees of freedom. The
couplings between these variables are determined by the underlying microscopic the-
ory. Thus we would like to know these effective degrees of freedom and the couplirgs.
So far the discuasion of M C RG has focused on the change uof scale without a change
of variables. To make full use of its power, a transformation of variables at the
appropriate scale should be added 1.e. in addition to a RGT that just averages over
degrees of freedom, consider & change from the microscopic theory to an effective
theory with new variables at some give length scale. These variables can be com-
posite (aa is the case in going from QCD to a theory where the degrees of freedom
are hadrons) cr represent a freezing as In S§U(2) at high temperatures where the
interaction between t..e Wilson lines ls described by an effective d = 3 Ising model.
Here one tranafo'r ma rom link variablea to Wilaon linea tn Inine anina
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Once the effective theory has been constructed, it is important to know the
universality class to which it belongs. This would provide a detailed knowledge of
the critical/long distance behavior. Little work has been done in actually exploring
universality classes by mapping flows that incorporate a change of variables.

The way to do this in standard M C is to define the composite degrees of freedom
and their n-point functions in terms of the microscopic variables. From the expecta-
tion values of these n-point correlation functions calculated as simple averages, the
corresponding couplings can then be determined by a Microcannonical simulation as
described in section 5.9. One such caleulation is by Ogilvie and Gocksch?® in which
they determine the nearest neighbor couplings between the Wilson lines in SU(2).

In MCRG, the transformation from the microscopic degrees of freedom to the
composite variables is made on the original lattice (same as in MC). The RGT is
defined on the composite variables and the critical exponents of the effective theory
are calculated from the LT M. The couplings can be determined by one or more of
the methods of section 5. This process also maps the universality class. Similarly,
IMCRG :2n be used provided HY is a guessed hamiltonian for the effective theory.
This subject is being actively pursued in collaboration with A. Patel, C. Umrigar
and K. G. Wilson and we hope it will blossom.
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